Goal \#1	Beginning	Progressing	Achieving	Excelling
Mixed radicals and entire radicals				

$\$$ Simplify. Show your steps and check your answer using a calculator.
$\sqrt[3]{250}$
$\sqrt{180}$

Identify and explain the error in the student's work below. Show the correct solution.
$\sqrt[4]{160}$
$=\sqrt[4]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5}$
$=\sqrt{2 \cdot 2} \sqrt{2 \cdot 2} \sqrt{2 \cdot 5}$
$=2 \cdot 2 \sqrt{10}$
$=4 \sqrt{10}$

Arrange the following numbers in order from smallest to largest without using a calculator. Show your reasoning.

$$
2 \sqrt{7}, \sqrt{15}, 4 \sqrt{3}, 5 \sqrt{2}
$$

Goal \#2	Beginning	Progressing	Achieving	Excelling
Fractional Exponents				

Evaluate without a calculator. Show your reasoning below each question.
$25^{\frac{1}{2}}=$

$$
625^{\frac{1}{4}}=
$$

ivaluate without using a calculator. Show your steps.

Write $\sqrt[3]{x^{2}}$ in exponential form.

$$
\left(\frac{125}{27}\right)^{\frac{1}{3}}=
$$

Kleiber's law relates a mammal's metabolic rate, Q (measured in Calories per day) to its body mass, m (measured in kilograms).

$$
Q=70 m^{\frac{3}{4}}
$$

Calculate the metabolic rate of a dog with a mass of 16 kg .

Goal \#3	Beginning	Progressing	Achieving	Excelling
Negative Exponents				

Evaluate without a calculator (show your thinking beneath each question.)
$4^{-3}=$
$\left(\frac{1}{2}\right)^{-4}=$
$\left(\frac{3}{10}\right)^{-2}=$
valuate without a calculator. Show your steps and box in your final answer.
$81^{-\frac{1}{4}}$
$49^{-0.5}$

为

$$
(-0.008)^{-\frac{4}{3}}
$$

Goal \#4	Beginning	Progressing	Achieving	Excelling
Apply exponent laws				

Simplify.
a) $\frac{\left(x^{4}\right)^{2}}{x^{-3}}$
b) $\left(10 x^{4} y^{-3}\right)^{2}$
c) $\left(3 x^{2}\right)^{2}\left(x^{5}\right)$

Stmplify and then evaluate without a calculator. Show your steps and box your answer.
a) $\frac{\left(0.3^{2}\right)^{-4}}{\left(0.3^{-2}\right)^{3}}$
b) $\left[\left(\frac{3}{4}\right)^{3}\right]^{-4} \div\left[\left(\frac{3}{4}\right)^{5}\right]^{-2}$

Simplify. Show your steps and box your final answer.
$\left(9 x^{4} y^{2}\right)^{\frac{1}{2}} \cdot\left(3 x^{3} y^{5}\right)^{-1}$

